Fourier coefficients for Continuous signal x(t) - a,

Asking deriving coefficients comes with periodic signal.

(CT FS) Basic concept of continuous Fourier coefficients

x(t)

x(t) : Periodic signal
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(CT FS) Continuous-Time, Fourier Series

1 .
ax = —f x(t)e Jkwotqt
T

T

or

1 .
ay = ?J‘ x(t)e Tk@T/Ttqe
T

IFS

a;, — x(t)

(CT IFS) Continuous-Time, Inverse Fourier Series
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Properties of Continuous-Time Fourier Series

Fourier coefficients for Discrete signal x[n] - a,
Asking deriving coefficients comes with periodic signal.

(DT FS) Basic concept of discrete Fourier coefficients
x[n] : Periodic signal
N : Fundamental Period (LCM of 2m)
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(DT FS) Discrete-Time, Fourier Series
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(DT IFS) Discrete-Time, Inverse Fourier Series
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Properties of Discrete-Time Fourier Series

Convert Trigonometric to exponential form
Many cases require to convert Trigonometric to e/ form.
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Fourier transform for Continuous-time signal x(t)
Most of case, aperiodic signals comes...

X(t) : single sliced periodic sig
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(CT FT) Continuous-Time, Fourier Transform ( periodic)
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Fourier transform for Discrete-time signal x[n]
Most of case, aperiodic signals comes...

Basic Discrete Fourier Transform Pairs

(DT FT) Discrete-Time, Fourier Transform
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